但我们大风集团推出的智能检测系统在比亚迪和吉利工厂取得了非常显著的效果,我们通过工业相机记录下生产过程,将视频交给人工智能进行机器检测。
一开始,我们的人工智能需要跟工人进行双重检查以达到双保险目的,而随着人工智能不断积累检查经验,深度学习开始发挥明显作用。
截止目前,我们在比亚迪使用的人工智能已经替代了工人50%的检测工作,不良品检出率高达86%,并且这个数据随着经验的积累正在不断优化。”
孟谦说到这开始视频展示智能检测在比亚迪的应用情况,给大家一个更加直观的感受。
“第二个目前比较成熟的技术应用就是智能维护,有工厂的都深知设备维护的重要性,但在传统工厂大家基本采用的都是被动式维护,等设备出了问题才去维护。
而现在我们打造的基于人工智能的智能维护可以利用机器学习来实现设备维护预警,我们这里也有一个案例,在我们与格力工厂合作的过程中,设备平均大修次数降低了51%,系统诊断及维护响应时间小于1小时。
不仅缩短了设备维护周期,还提高了设备利用率。”
接下来自然同样是一段视频展示,“最后我们来说说第三个智能应用见到成效的地方,那就是智能供应链。
在华夏企业全球化的过程中,我们不仅意识到了垂直产业链的重要性,更感受到了供应链的重要性。
这次霓虹国的事情相信给不少企业带来了一次正面冲击,也因此很多人都在好奇大风集团为什么好像在这一次事件中并没有受到什么影响。
今天也算是我第一次正面回应这个问题,除了我们在产业链上的高度自给率以外,我们这次能如此看似轻松的应对这一事件的关键其实就是因为我们在内部打造的智能供应链系统。
像我们这样的跨国企业,传统供应链管理在我们的全球化过程中表现出了非常明显的缺陷,效率低、流通成本高、需求预测不准、供应响应不足、应对供应链波动的能力不足、厂商的库存管理成本偏高等等。
当我们让机器学习进入到供应链管理中之后,人工智能可以有效的通过对需求,计划以及库存的分析建立实时的供应链匹配关系,通过人工智能,我们建立了多级库存,计划生产库存动态调整甚至采购和补货的半自动化。
我们直接通过视频来看一眼,在这一次的霓虹国事件中,我们的智能供应链系统第一时间给我们提出了材料采购方案,全球工厂生产方案,针对全球各地的市场供给方案调整以及未来的供需预测。
我们通过这一系统反馈在第一时间明确了不同国家不同城市在接下去两到三个月的供货和销售目标,及时调度,最大程度的降低了霓虹国事件对我们公司的影响。”
孟谦这一套智能供应链系统展示下来看的这些制造业企业代表两眼冒光。
“大家看到这,是不是对云智能+制造更感兴趣了?”孟谦看着大家的表情笑着问道。
所有人下意识的点头。
“那接下来让我们梳理一下云智联+制造的核心技术,分别是半导体芯片,核心装备部件,核心软件以及核心算法。
现在拆开来看,我们有信心认为我们在核心算法和软件上是可以跟米国一拼的,工业半导体整体我们依然落后于米国,而最大的差距现在还是在核心工业设备上。
大家是否认可我们的判断?”
所有人再次点头,孟谦也点了点头,“很显然,云智联+制造的全面发展是离不开这四个核心,所以在三个成功应用案例之后,我们来从这四个核心探讨一下这个技术的现状。”
...