第929章AI共生发展技术(2 / 2)

在台下的议论声中,大风半导体的梁梦松登上了舞台。

梁梦松同样先介绍了一下大风集团在AI半导体领域的主要芯片发展,然后开始了今天的最后一个话题,“这些年人工智能尤其是深度学习的发展更进一步的证实了我们公司多年前的一个论点,人工智能的发展需要新的硬件架构来满足指数级增长的算力需求,也就是我们之前提到的硬件革命。

这场硬件革命显然已经拉开了大幕,而在驱使这场硬件革命向前进的过程中,大家都遇到了一个问题。

长期以来,芯片的设计耗时耗力,严重拖累了芯片的迭代速度,这也是为什么半导体企业都会有一个五年七年甚至十年发展蓝图的原因。”

说到这,梁梦松突然停顿了一下才继续,“我们大风半导体之所以在半导体领域有如此建树,很重要的一个原因就是我们对半导体产业发展的预判精准。

而这也是部分半导体企业一直想要垄断这个行业的原因,因为越垄断,就越能精准预判未来,毕竟对于垄断者而言,未来的发展是可以控制的。

但是对于快速爆发的人工智能来说,一来不存在所谓的垄断半导体企业,二来产品迭代太快,五年十年的规划根本无法适应人工智能这个领域。

因此,对于AI芯片的发展来说一条必经之路就是得想办法压缩设计时间,可对于人类专家而言,面对日益复杂的芯片进化根本没有能力压缩设计时间,直到我们找到了一个有趣的技术发展方向。

那就是用深度学习来推动硬件革命。

是的你们没有听错,硬件革命推动了深度学习的发展,而深度学习的发展又反过来推动硬件革命,这也就是我之所以说有趣的原因。

我们称之为:AI共生发展技术。”

梁梦松开始展示一份文件,“我们利用深度学习,通过学习过去的芯片设计经验,让机器来参与芯片的更新优化。

我们最早的实验目标的就是全局布线,因为这是芯片设计中最复杂也是最耗时的阶段,我们利用深度学习算法,通过对过往布局网表的学习,成功为从未见过的新网表生成优化的芯片设计方案,更重要的是,我们压缩了10倍的时间。”

梁梦松开始对文件做详细解读,通过很多细节的数据来展现用深度学习反推进芯片发展的可行性及高效性。

“在不久的未来我们很有可能会看到的一个场景是,上半年刚听说3nm量产,下半年就听说2nm量产,再过个年1nm量产就来了,我相信这个未来很快会到来。

而且这一技术突破不仅能压缩芯片设计周期,还能帮助小而美的公司以一个相对较低的成本开发专用AI芯片,进一步促进专用芯片的大爆发。

我们将从即日起为全球企业提供这一技术支持,为硬件革命,为AI芯片的发展再进一份力。”

...

“我来捋一捋现在的情况,从底层芯片到深度学习框架,再到到通用AI技术,最后到人工智能应用,华夏在人工智能的发展上,这一条线打通了啊。”

“而且你随便单拎一个产业出来又是一个产业链,就拿芯片来说,设计,制造,材料,工艺,现在还有AI共生发展技术,近在眼前的硬件革命...

英特尔的工艺制程怕是再也不可能追上大风集团了啊。”

“别说追上了,不被甩开英特尔都该庆幸了。”

“这招有点厉害了,通过AI芯片催动硬件革命,直接终结摩尔定律,进而终结英特尔长年以来的垄断。”

“我现在有点疑惑了,就华夏这科技水平和市场份额,米国企业哪来的底气限制他们?

华夏企业不限制他们,他们就该谢天谢地了吧。”

...